Vitamin B₁₂Assay Kit

(Product No. VT3102)

1. Introduction

The test kit uses the specificity of *Lactobacillus leichmannii* ATCC 7830 for Vitamin B_{12} to determine the amount of Vitamin B_{12} through the turbidity formed by bacterial growth in samples containing Vitamin B_{12} .

2. Principle of the Method

The growth intensity (turbidity) of *Lactobacillus leichmannii* is linearly related to the amount of Vitamin B_{12} in the medium containing all nutrients except Vitamin B_{12} . The medium, *Lactobacillus leichmannii* and the prepared sample extracts (or standards) were added to the 96-well microplate and *Lactobacillus leichmannii* will grow until Vitamin B_{12} is depleted. A standard curve is plotted using the turbidity of the bacteria after incubation in standards against the different concentrations of the standards, and the amount of Vitamin B_{12} in the sample is obtained by measuring the turbidity of *Lactobacillus leichmannii* in the samples on the standard curve.

3. Product properties

Procedure time: operation time: 1h; incubation time: 44-48h Range: 0.02-0.16 μg/100 g(mL) Recovery: 80-120% Intra-batch variation: <10% Inter-batch variation: <10% Storage condition: 1 year shelf life under 2-8°C storage

4. Reagents provided

Vitamin B ₁₂ Standards	3 vials
Vitamin B ₁₂ Test Bacterial Ball	3 vials
Vitamin B ₁₂ Medium	3 vials
1X Vitamin B_{12} Buffer (50 mL/vial)	3 vials
Vitamin B ₁₂ Protectant	3 vials
Sterile Water (10mL/vial)	3 vials
Sterile 96-well Microplate individually	3 plates

BEIJING LAND BRIDGE TECHNOLOGY CO., LTD.

No. 3, Gaobeidian North Road, Chaoyang District, Beijing (100123) Tel: +86-10-51203999 +86-400-810-1304 Mail: info@beijinglandbridge.com Web: www.beijinglandbridge.com

北京陆桥技术股份有限公司 BEIIING LAND BRIDGE TECHNOLOGY CO. LTD.

GFAD[01]10.23

packed

Sealing Film	3 pieces
5. Materials required but not provide	d
5.1 Ultra-clean workstation	5.7 Pipette and sterile tips, 20-200 $\mu L,1001000\mu L$
5.2 Microplate reader (550 or 630	5.8 15mL and 50mL sterile centrifuge tubes with
nm)	screw cap and 1.5 mL or 2 mL sterile centrifuge
	tubes
5.3 Constant temperature incubator,	5.9 Sterile syringes and 0.22 μm sterile filter
36°C±1°C	membrane
5.4 Autoclave	5.10 Distilled water
5.5 Water bath, 95°C	5.11 Graduated cylinder and 300 mL conical flask
5.6 Vortex mixer	

6. Reagent preparation

6.1 Vitamin B₁₂ **Protective Solution:** In ultra-clean workstation, take 1 vial of Vitamin B₁₂ Protectant, add 10 mL of 1X Vitamin B₁₂ Buffer and dissolve thoroughly to make Vitamin B₁₂ Protective Solution (Prepare it fresh when needed).

Note: Vitamin B₁₂ Protectant can also be dissolved in 10 mL of distilled water.

6.2 Sample Preparation Solution (20 mL/sample): According to the number of samples to be tested, measure the required volume of distilled water, and dilute Vitamin B₁₂ Protective Solution in 6.1 with distilled water at the ratio of Vitamin B₁₂ Protective Solution: distilled water=1:50 to create **Sample Preparation Solution** (Prepare it fresh when needed).

Note: Calculate the volume of Sample Preparation Solution required based on the number of samples to be tested. Each 96-well plate can generally accommodate the test of 8 samples and it requires 160 mL of Sample Preparation Solution, so measure 200 mL of distilled water and add 4 mL of Vitamin B₁₂ Protective Solution to obtain the needed Sample Preparation Solution.

6.3 Standard/sample Diluent: In the ultra-clean workstation, remove bacteria by filtering the Vitamin B_{12} Protective Solution in 6.1 through a 0.22 µm filter membrane and then add the filtered Vitamin B_{12} Protective Solution to 1X Vitamin B_{12} Buffer at a ratio of filtered Vitamin B_{12} Protective Solution : 1X Vitamin B_{12} Buffer = 1:50.

7. Sample preparation of milk powder

BEIJING LAND BRIDGE TECHNOLOGY CO., LTD.

No. 3, Gaobeidian North Road, Chaoyang District, Beijing (100123) Tel: +86-10-51203999 +86-400-810-1304 Mail: info@beijinglandbridge.com Web: www.beijinglandbridge.com

7.1 Weigh 1 g (to the accuracy of 0. 001 g) of milk powder in a 50 mL centrifuge tube and add **20 mL of Sample Preparation Solution, corresponding to an extraction dilution factor of 20, which is already included in the standard curve.** Mix it well and put the tube in a water bath at 95°C for 30 min, during which mixing it periodically on a vortex (at least 5 times), then quickly cool it to below 30°C in ice water.

The following operations need to be carried out in the ultra-clean workstation:

7.2 Filter the cooled extract through a $0.22 \ \mu m$ filter membrane into a 2 mL sterile centrifuge tube to create a sterile sample solution.

7.3 Dilute the sterile sample extract with Standard/sample diluent in 6.3 to Vitamin B_{12} concentrations of approximately 0.06, 0.08 and 0.10 µg/100 g (mL).

Example of sample preparation

For example, to test Vitamin B_{12} concentration in an infant milk powder sample labeled with 2 μ g/100 g (mL) Vitamin B_{12} inside, weight 1 g of sample in a 50 mL centrifuge tube and add 20 mL Sample Preparation Solution in 6.2. Put the tube in water bath at 95°C for 30 min for extraction, and then quickly cool it down to below 30°C. Filter the cooled extract through a 0.22 μ m filter membrane to remove bacteria. Dilute the filtered sample extract 33.3 times, 25 times and 20 times to obtain the final concentrations of Vitamin B_{12} approximately at 0.06 μ g/100 g (mL), 0.08 μ g/100 g (mL) and 0.10 μ g/100 g (mL) respectively. For operational convenience, samples can be diluted 35X, 25X and 20X respectively. The dilution method is listed as follows:

Sample dilution times	Dilution protocol
©5 times	400 µL Standard/sample Diluent +100 µL sample extract
©20 times	300 μL Standard/sample Diluent +100 μL Φ solution
325 times	400 μL Standard/sample Diluent +100 μL Φ solution
@35 times	600 μL of Standard/sample Diluent +100 μL O solution

Note: Samples should be fully mixed after each dilution step and sample extracts must be used on the same day and stored in dark place. In case of unknown samples, two Vitamin B_{12} concentrations should be assumed and processed separately as above, with the two assumed values being adjacent orders of magnitude, following the steps above.

8. Method procedure

8.1 Vitamin B₁₂ Standards preparation (to be carried out in an ultra-clean workstation)

BEIJING LAND BRIDGE TECHNOLOGY CO., LTD.

No. 3, Gaobeidian North Road, Chaoyang District, Beijing (100123) Tel: +86-10-51203999 +86-400-810-1304 Mail: info@beijinglandbridge.com Web: www.beijinglandbridge.com

Take 1 vial of lyophilized Vitamin B_{12} Standard and add 5 mL of Standard/sample Diluent to prepare a standard solution of Vitamin B_{12} . Take 8 sterile 1.5 mL centrifuge tubes and prepare a series of standard solutions from 0.02 to 0.16 µg/100 g (mL) according to the table below:

	Volume of		Volume of		Total
μg/100 g(mL)	standard		Standard/sampl		volume
	solution (µL)		e Diluent (µL)		(µL)
Standard 1: 0.02	100	+	900	=	1000
Standard 2: 0.04	200	+	800	=	1000
Standard 3: 0.06	300	+	700	=	1000
Standard 4: 0.08	400	+	600	=	1000
Standard 5: 0.10	500	+	500	=	1000
Standard 6: 0.12	6: 0.12 600		400	=	1000
Standard 7: 0.14	700	+	300	=	1000
Standard 8: 0.16	800	+	200	=	1000

Note: Standard solutions should be prepared fresh when needed and they cannot be stored.

8.2 Preparation of Vitamin B₁₂ Medium Solution

 Pour one bottle of sterile water provided in the kit into one vial of Vitamin B₁₂ Medium, and then tighten the cap and shake it until dissolved (sterile water provided in the kit must be used).
 Put the Vitamin B₁₂ medium solution vial in water bath at 95°C for 5 min and shake it 2-3 times during this time, and then quickly cool it in ice water to below 30°C.

3) In the ultra-clean workstation, filter the Vitamin B_{12} Medium Solution through a sterile 0.22 μ m filter membrane into a 15 mL sterile centrifuge tube. Each vial of Vitamin B_{12} Medium is sufficient for 1 microplate of 96-well.

8.3 and 8.4 below need to be carried out in the ultra-clean workstation:

8.3 Preparation of Vitamin B₁₂ Test Bacterial Solution

Dissolve 1 vial of Vitamin B_{12} Bacterial Ball in the filtered Vitamin B_{12} Medium Solution in 8.2, and then tighten the cap and shake it until fully mixed.

8.4 Assay procedure

1) Determine the number of microwell strips required to test the desired number of samples plus the number of wells needed for standards, considering that each sample and standard

BEIJING LAND BRIDGE TECHNOLOGY CO., LTD.

No. 3, Gaobeidian North Road, Chaoyang District, Beijing (100123) Tel: +86-10-51203999 +86-400-810-1304 Mail: info@beiijinglandbridge.com Web: www.beijinglandbridge.com

need be tested in triplet. Insert the appropriate number of strips in the holder, and record the position of the wells to create a layout. Immediately reseal the unused strips in the bag together with the desiccant bag provided and store in 2-8°C.

2) Add 100 μ L of Vitamin B₁₂ Test Bacterial Solution in 8.3 in each well.

3) Add 100 μ L of Standard 1 to wells A1, A2 and A3; add 100 μ L of each standard solution (Standard 2-8) to wells B1, B2 and B3, C1, C2 and C3 -- H1, H2 and H3 as shown below. The concentrations of Standard 1-8 are 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16 μ g/100 g(mL)

	1	2	3	4	5	6	7	8	9	10	11	12
А	St1	St1	St1									
В	St2	St2	St2									
С	St3	St3	St3									
D	St4	St4	St4									
Е	St5	St5	St5									
F	St6	St6	St6									
G	St7	St7	St7									
Н	St8	St8	St8									

4) Add 100 μ L of each prepared sample to the remaining microtiter wells.

5) Seal the wells on the strip with a sealing film and press the film to ensure that all wells are adequately sealed.

8.5 Incubate at 36°C \pm 1°C for 44-48 h in an incubator, avoiding light.

8.6 Measurement

 Take out the plate from the incubator and press the sealing film again to ensure that all wells are adequately sealed. Shake the plate upside down repeatedly to mix the microorganisms well.
 Remove the sealing film diagonally and puncture the air bubbles on the surface of each well with a needle.

3) Measure the absorbance at 550 or 630 nm. 550nm is recommended.

Note: If the absorbance cannot be measured in time after incubation, keep the plate at 2-8°C for no more than 48 h.

BEIJING LAND BRIDGE TECHNOLOGY CO., LTD.

No. 3, Gaobeidian North Road, Chaoyang District, Beijing (100123) Tel: +86-10-51203999 +86-400-810-1304 Mail: info@beijinglandbridge.com Web: www.beijinglandbridge.com

9. Data analysis

9.1 Determination of validity of test results:

OD values of low concentration standards < OD values of high concentration standards

9.2 Select the optimally diluted sample to calculate the results:

For each sample, which is diluted to three different levels of concentration, select the one(s) whose OD value locates at the middle of the standard curve. In case two or more are in the middle, calculate the average result.

Use the 4-Parameter calculation formula in professional ELISA statistical analysis software to calculate the concentration of Vitamin B_{12} in the samples. (Note: when multiple the dilution factors of samples, do NOT consider the 20X dilution during extraction.)

Note: The consumables required for the experiment must be sterile; waste must be disposed of after the experiment in accordance with the relevant regulations.

Note:

For infant and young children's complementary foods samples like baby rice cereal or baby noodles, sample preparation protocol for milk powder can also be applied. However, due to the high starch content of these products, a colloidal state is easily formed during the extraction process, which results in the incapability to apply membrane filtration directly after the extraction. In this case, the sample extract can be diluted first and then filtered to remove bacteria and debris. Use the filtrate for assay.

For laboratory use in industry or R&D purpose. Not for drug, household or other uses.

Beijing Land Bridge Technology co.,LTD

Add.: No. 3, North Gaobeidian Road, Chaoyang District, Beijing (100123)
Shandong: Room 703, Block A, Heda Center, 177 Tailiu Road, North district, Qingdao (266033)
Guangdong: East 4th floor, building A, Jinhe Industrial Park,
Shibei industrial road, Panyu District, Guangzhou (511400)
Northeast: Room 808, National Milk Center, No. 2727, Innovation Road, science and
Technology Innovation City, Songbei district, Harbin
Chengdu: Room 204, unit 1, building 1, Zhonghai International Orange County Phase I, high-tech West district, Chengdu, Sichuan Province (610096)
Shanghai: Room 406, floor 4, building B, no. 455, Yanzhan Road, Songjiang District
Emerging Industrial Park, Caohejing, Shanghai

BEIJING LAND BRIDGE TECHNOLOGY CO., LTD.

No. 3, Gaobeidian North Road, Chaoyang District, Beijing (100123) Tel: +86-10-51203999 +86-400-810-1304 Mail: info@beijinglandbridge.com Web: www.beijinglandbridge.com

Hotline: 010-51203999 0532-82689263 020-38011430 0451-87821139 Website: www.beijinglandbridge.com E- mail: tech_e@beijinglandbridge.com

BEIJING LAND BRIDGE TECHNOLOGY CO., LTD.

No. 3, Gaobeidian North Road, Chaoyang District, Beijing (100123) Tel: +86-10-51203999 +86-400-810-1304 Mail: info@beijinglandbridge.com Web: www.beijinglandbridge.com